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MOMENT INEQUALITIES FOR REAL AND VECTOR p-STABLE STOCHASTIC INTEGRALS1

.2
J. Rosinski and W.A. Woyjczynski

University of North Carolina at Chapel Hill
and

Case Western Reserve University

1. Introduction.

4-the -pres-et paper .we--b+ a-rr moment inequalities for single and

double stochastic integrals with respect to p-stable motion.S-e-ction

3).- The proofs are based on our own work on the structure of sinqle

and multiple p-stable integrals (cf. [12], E11] and [13]) which is

summarized in some detaiV- -n Section 2, and on the work of R.F. Bass

and M. Cranston [1] o-P inequalities for moments of exit times of a

p-stable motidn, 4+'4cr results, as stated in [1], 'do not apply

directly to the situation in which Ave want to use them, in particular,

because one dimensional processes are explicitly excluded there. So,

-we-offer the needed variation of their result.in Section 3 and, for

the sake.-of completeness, provide its full proof in the Appendix.

-In %ec-tion 4-we propose an extension of the theory of stochastic

integration with respect to a p-stable motion, to the case when the

latter takes values in a Banach space.

2. Single and double p-stable integrals.

Let (f2,F,P) be a probability space and let (F ) be a riqhtt t>O
continuous, increasing family of P-complete sub-o-fieTds of F. Let "

0 < p < 2. We will denote by (M(t)) an (Ft)-p-stable motion i.e.

an (Ft)-adapted process with M(O)-O, Yample paths a.s. in D[O,w) and

E~exp [ix(m(t) -M(s))]IF =exp [-(t-s)I~IP)

for every 0 < s < t, and X c . For a simple (Ft)-adapted process

F such that
0J w) for t-O

o*1(w) for tI < t <t 1,, =0,I

2 Research supported by AFOSR Grant No. F49620 82 C 0009
On leave from Wroclaw University

,., °".. -•,.. . . -..... .'....... .. ....... --------------------------------------------



the stochastic integral is defined as usual:

t n-itF(s,w)dM(sw) 0 ¢ (w)(M(ti~l,')-M( ti,01))+1 n(,)(M t,"W) -M( tn, ) , -.

0 i=O ".

if t < t < tn, n=0,l,2,.... Clearly, the above integral is a
n n+19

process with sample paths a.s. in D[O,w).

DEFINITION 2.1. An (Ft)-adapted measurable process F=(F(t,w))t>O

is said to be M-integrable if there exists a sequence (F n ) of simple-

(Ft)-adapted processes such that for each T > 0:

(i) Fn - F in measure dPdt on 0 x [0,T] as n ,

(ii) $ FndM converge a.s. uniformly in t c [0,T] as n

and the limiting process in (ii) does not depend on the choice of a

sequence (Fn) satisfying conditions (i) and (ii). This limit process

(with sample paths a.s. in D[O,-)) will be denoted by f.F(s)dA(s),

t > 0.

THEOREM 2.1. ([12)) The process F is M-integrable if and only if

F E LP i.e. if

T
P IF(t,u,) Pdt <

for each T > 0.

The sufficiency in the above theorem (which also follows from a

general result of 0. Kallenberg [5])is obtained by means of a pathwise

construction which parallels a known Brownian integral construction

and which depends on the following inequality for simple processes F:

there exists a constant c = c(p) > 0 such that for each T > 0

cIIFII T < sup PP sup t FdMt > X) < cIFIIpT

X>O t<T 0

where T

IIFHI , E IF(s,,)IPds.

...

0

The inequality implies that the mapping F f $FdM extends to an

isomorphic embedding of LP(L p ) into a Lorentz space AP(La). The

upper estimate was obtained by E. Gin# and M.B. Marcus in (4].



The proof of necessity uses device of the inner clock for p-stable

stochastic integrals the usefulness thereof is established by the

following:

THEOREM 2.2 ([12)). Let F e LP be such that

df au
T(u) = J IFPdt a.s. ,. -

0

as U o. Then, if

T1 (t) = inf { u: T(u) > t) and At = F
T(t

then the time-changed stochastic integral

1 (t)
M(t) = F(s)dM(s)0:

is an (At) -p-stable motion.

The above theorem can also be used to establish properties of

integrals which are "pathwise inherited" from the properties of

p-stable motion itself. For example, the above result immediately

yields the following corollary to the classical Khinchine's result

on the local behavior of processes with stationary and independent

increments:
I.

THEOREM 2.3 ([12]). Let F be as in Theorem 2.2 and suppose that

€: (0,o ) F ]R+ is such that tl/P@(t) is increasing and limt- 0 (t)--

Then

J F(s)dM(s) = o(tl/P(t)4 (T(t))) a.s.

as t 0 0, if and only if .-__

J t-l P(t) dt <
0 0] :,:",

Theorem 2.1 implies that the necessary and sufficient condition

for existence of the double integral

T t Co.d.esty Code.

(2.1) f(s,t)dM(s))dM(t) / . S' pect i and/or'

is that

.. ........ .. ................ . .
. . . . . , • o . . . . . - . , " Y . + * * . -; . :. . - • • . . . . . .•



(2.2) P{ I l F(tflpdt < 1

where t
F(t) =Jf(s,t)dM(s), t [0,T].

0

The condition (2.2) is equivalent to the property that the integral

operator T
LP [O,T) 3 f - f(s,t)X (s,t)40At) t L[,]

where l/p'+l/pl, and t6 {(s,t): 0 < s <t < T}, is 0) p-radonifying

(or, by Kwaplen-tMaurey Theory, completely summing) (cf. [7), [3)).

The above equivalence follows, in particular, from the following

result which gives a natural necessary condition for f to satisfy

(2.2). Although this result may have been known in the folklore,

we were unable to locate a published proof of it and decided to
provide our own proof below. Proof of Thin 2.4 relies on Prop. 2.1.

PROPOSITION 2.1. Let T be a measurable apace, ii be a a-finite

measure on T., and let

X(t) =Jf(t,s)dMs) , t T, .

0

be a p-stable process, where f: T [0,l)-.JF is a jointly measurable
function. Then if

then0

Proof. Observe that Vq <p3 c v tit. .. 9,t n T

n n

(2.3) (JoI . 1 f(t1,s)Ipds) 11 P C(Et(I l ( )1P)/p)l/q

Note, that (2.3) is just a special case of the 'stable-cotype-p"
inequality (valid in an arbitrary Banach space E, cf. e.g. [7),

Cor. 7.3.5):



1 E

0-0

where f is taken to be as follows:

n
(2.4) f: [0,1) so s I I 1 (umft.,s) L [((0,),du) E.

Assume initially that ij(T) 1, and define (on a new probability

space (SupU) a sequence of i i d. random variables U n: Q U -+T
nr-1,2,. ... such that L(U ) .Then, by (2.3) for eachw CP

n

(2.5) > nI l f(U.,sfl~ds)11 P

0 1 1 1

n ij IIfU Lp (0D,1)ds)

Now, by the Kolmogorov's Law of Large Numbers, for each w such that

fIX(t,w)dv~(t) < we get that

1 ~ X(1,cj~p -, Eu XU,)~ IX(t.w)I~d,,(t)<

n =1p -a.s. '

as n * .By Fubini's Theorem, for P U -almost all w U 'S

n tilx(U (W ), )P I b f IX(t)l~dv(t) P-a.s.

Since for any p-stable random vectors Y,Y1,,Y2 %.. .. with values in a

Banach space E, and any q < p, HIY nHE - IYIE in P if and only if

EIIY~ H~ - EIIYIIq. (cf. [7), Prop. 7.3.11) we can use the same idea

as in (2.4) to obtain that P as

EP IXH(U 1 P~/ X( XtlPat)s.

ITi

............................................. n By (2.5. . . . .

SUP i v mp P a.



.7'-7

j f(t,s)jPdsi,(dt) = EU 1 f(U i , . ) II p  <
U' LP(ds)

which completes the proof in the case v(T) = 1.

Notice now, that letting n - in (2.5) one immediately obtains

.he Inequality

I/

(JT I f(ts)IPdsu(dt))1p<C(E( 
T X(Xt)lPdp(t))q/p)

=C(El IX(.)Ill Pr) / q < CD

from which the extension to a-finite ii's follows. Q.E.D.

The necessary condition for a.s. p-integrability of sample paths

of p-stable processes established by Proposition 2.1 is, however,

not sufficient and the following result gives full analytic descrip-

tion of kernels f which have the property (2.2):

THEOREM 2.4. [12]. Let 1 < p < 2 and let the parameter set T be

a serarable metric space equipped with a o-finite Borel measure L.

For a measurabZe symmetric p-stable process

X(t) = f(st)dM(s) t T, . . . -

we have that

P{ JX(t)lPu(dt) < 1,IT

if and onZz if

df
A (f) =
p

If(st) IfJJ if(st) Pi(dt)ds

(I f(s,t) IP[l+log+ 0 ]dsp(dt) <' 0 1 ' :fst''t

J If(st)jPds f(st)lPw(dt)

The proof depends on the following two facts:

(i) X(t) has sample paths a.s. in LP(T.P) if and only if the

series E -/P rjVj(t) converges a.s. in LP(T,i), where (rj) are

Rademacher r.v.'s and V are independent copies of a process V(t),

t E T, which has sample paths a.s. in a sphere of LP(T,u), and which

has finite dimensional distributions completely determined by f

L

•~~ .... . ...-. : - ' - . .-- - . .. .--. -..- . . . .. . . ..... .' ---.. ...- .- . . -. .....
o .°. ,°'. *,L

" .
, ".'° ""•f . - ". """".. -"." .". " o". m ," .'•"o", "..' . ,%o.' ,.. ... ,1... i i l i 

i
. ..... .. . ... . .. . .. . . .



(cf [12) but the idea really goes back to [8], Remark 3.15);

(ii) for i.i.d. symmetric r.v. 's X,X,,X2,

c II(IIg 1X )< IJ-/PX IP<cEIXIP(l + log+

EIXIP jIX!

where 0 < p < q , and c c cp) i s a numerical constant (cf [3))

COROLLARY 2.1 ([12]). Let 1 < p < 2. The double integral

A {(s.,t): 0 < s < t < T),exists if and only if A (f I) < o

For f constant on rectangles the double integral (2.1) becomes a

random quadratic form

Q (a) = a(i,j) M.M.
i<j *

where M,, M2,. are i.i.d. p-stable random variables, and one

immediately obtains from Corollary 2.1 the following

COROLLARY 2.2 ([3]). Let 1 < p <2. Q (a) converges a.s. if and

only if

Ia(i~j)IP

1=1 l=j+l

Although we don't have at this point a good theory of n-tuole
p-stable integrals for n > 3, the theorem below, concerning general
multilinear random forms may be considered as a step towards such a

theory.

THEOREM 2.5 ([13)). Let 0 <p <2. Let X,X,,.. eixd

w..ith symmnetric distribu~tions su~ch that

Ifil xpP{ lxi >X) c > 0.

. . . .. ... . .......... . . . . .



|I

if dfk-1

N k)(a) = ja(il,...,ik)IP(l+log l a(il,.,ik) -

i <i2 <. <ik

then the sequence

0 k)(a) = a(il,...,ik)Xi ...Xl, n=l,2,...,il i < <kn 1 k" i k ..

converges unconditionally (i.e. o0k)(ca) converges for aZl

c: INk - {-,1) in Lq for every q<p to a 0 k) (a) which, for all x>O

satisfies the following inequalitz,

Pfjo(k) (a)l>x -< Dk pX P(l + log+ x)N (a),

where Dk,p is a constant.

The proof relies on the tail estimation for 0 (a) which uses then

fact that

lim xP(p log x)lk P IX'X 2 ".. XkI>X} = /(k-l)!
X- +

For further results in this direction see a recent paper by W.

Krakowiak and J. Szulga [6].

3. Moment inequalities for exit times of stable processes and for

p-stable stochastic integrals.

In this section we present a version of R.F. Bass and M.

Cranston's (1] inequalities for moments of exit times of a stable

process X in the case when X takes values in a separable Banach space

E. As corollaries we also obtain moment inequalities for single and

double stochastic integrals with respect to p-stable motion.

Recall that a non-zero E-valued stochastic process X(t), t > 0,

is said to be a symmetric p-stable Levy process, 0 < p < 2, if

(i) X has independent and stationary increments,

(ii) X(t) - X(s) It - sII/PX(l) for every t,s > 0,
(iii) ( c DE[O,=) and X(O) - 0 a.s.

The characteristic functional of X(t) can be written in the form



(3.1) E exp[ix*X(t)] = exp[-t i lx*xPm(dx)],

where m is a unique, finite, symmetric (i.e. m(-B) =m(B) for every

Borel set BcU) positive measure on the unit sphere U of E. Such an S

m is called the spectral measure of X. The distribution of X(t) is

infinitely divisible without the Gaussian component and with Levy

measure represented in polar coordinates as tc m(dx)dr/r l + p , (r,x) -
p

(0,-) x U, where cp > 0 depends only on p.

Let X(t), t > 0, by a symmetric p-stable Levy process in E and

let {A t t> be a right continuous filtration such that X(t) is

A t-measurable and o(X(u)-X(t)) is independent of At for every u>t>O.

We will say that a continuous function €:[O,) - [0,-) grows

more slowly than )P,_ p-> 0, if there exist constants c,a0 and q < p

such that

O(C1)) < caq(PM

for all X > 0 and all a > an .

The proof of the following version of a theorem of R.F. Bass and M.

Cranston [1] is supplied in the Appendix.

Theorem 3.1. If g rooe more soZo,?jTv t'a )P, 0 < p < P., tbo'"

there exist positive constants c1 and c2 depending only on p,cc 0 .

and q such that for every finite {At}-stopping time T

ClE'V(-t / p )  < E, (X*(T-)) < E (X*(T)) < c2E.(-rI/P),-,

where X*(T-) = sup IIX(t)JI and X*(T) = sup ljX(t)jj.
t<T t<T

Define now, a p-stable process starting at x ( E by means of the

formula

Yx(t) = x + x(t), t > 0, x c E.

Then, with the help of Theorem 3.1, one can obtain the followinn

COROLLARY 3.1. If t grows more slowly than P, 0 < p < 2, the,:

there exist positive constants d, and d2 dependin.7 nZ,, or p,c, 0

and q such that for every finite {A t-stopping time T -nd x Et

. ...-..- .
-
... . . . .. . . ................ ..



I E:(I(xl +Tr) _ P)<E(Y*(.t ))<E¢(Y*(- ))<dE'((Ix- P+) i/p).
Xix((l (P IHEC)x  2

Proof. An elementary application of the triangle inequality

fields that

x, + x) < Y*(II) < x, + lixl.
_ x -

Similar inequality holds for X*( -) and Y*(-c-). Hence, with L-P

standing for the inequalities C- L < R < CL, where C is a positive

constant depending perhaps on p,c,c O , and q, we have

+ I Ix I x x*(T))

where u (N) = ( + u), and an analogous result obtains for X*(T-)

and Y*(T-). Since € (ax) < cotq ( ) for all X > 0, u > 0 and
X U U

> a 0ovl, Theorem 3.1 gives that

E0lir p)-I lI (X*C -))-E, x (X*(r)) "
l i X IxII lxl (x('

which concludes the proof. Q.E.D.

We shall apply now the above theorem to obtain moment estimates

for stochastic integrals.

THEOREM 3.2. Let M(t) be a reaZ (Ft)-p-stabZe motion and Zet
La P If P arows more 6ZowZu than AP then there exist .orctizc

a . . -.. ,.

2 

0
t ,

< El(sup i F(s)dM(s)l) < c2 E¢(( IF(t)lPdt) I /P)

0

Froof. Since u is fixed here, we can always extend F in such a

way that

T(u) = F ljPdt - a.s.

Therefore, by Theorem 2.2

• . .

. .,Ii -. I -.L T .= " . .. . - : . . . i .. . ..-> -. . .> - I. -. - . :.
-, L -.L .. ... . . - -. . . .-. . . -. . . . . . . - - -, - -. .-.. . . . -. . -. --. ". -. . . - . . . , . -. .- ---

.. .. ," l i , ,w' ii~~ ~ ~~~~~ . . .:- "" " -" - -"' " -'" ' '



1(t)
X(t) = F(s)dM(s)

0

is an (At)-p-stable motion, where

At = Ft (t)

and

t- (t) = inf {u: T(U)> t)

Applying Theorem 3.1 to X(t) and t = T(u) one immediately obtains

our result. Q.E.D.

Taking f(s,t) such that A (f) < and substituting in the above

Theorem t

F(t) = ff(s,t)dM(s)0

one immediately obtains from Corollary 2.1 the following result:

COROLLARY 3.3. If 4' grows more slowl than X then there exist

positive constants C1 and c 2 depending onZy on pc,a0 and q such tt-'

for each u > 0 It p°
CIE,f( J J f(st)dM(s) dt) b

0 0

< E0 sup JVf(s,t)dM(s)dM(t) j
v<u 0 0

< C2Ef (J t f(st)dM(s) Pdt)}.

The following theorem summarizes recent results concerning moment

inequalities for double p-stable stochastic integrals:

THEOREM 3.3. Let 1 < q < p < 2. Then there eXist positi'e

constants Cl,c 2 and C3 depending onlu on p,q, such that

L . ' / .' . . . . ' : ' " . .' ' - -. - ' " ' ." L . " " '- . - ' . -1 " -2" . . " .' '' ' '"3. " " "



c A J fsqd/s) q/

U t q
< E fff(s,t)dM(s)dM(t)

0 0

< E su p li it f(s,t)dM(s)dM(t) q

3 p

The proof of the two sided estimate between the first and second
quantities has been recently obtained by J. Rosinski 110], between

the second and third quantities by T. McConnell and M. Taqqu [9].
In this situation Theorem 3.3 follows directly from Corollary 3.3.P

4. Integration with respect to a vector-valued p-stable motion.

Let X be a symmetric p-stable Levy process, 0 < p < 2, with-
values in a separable Banach space E (see Section 3), and let

~ ~c~be a right continuous filtration such that X(t) is

measurable and o(X(u)-X(t)) is independent of F for every u>t>O.

THEOREM 4.1. For each reaZ process F c Lp5  there exists an

* E-valzded process Y(t) (denoted f F(s)dX(s)) with sampZe paths in

D D[0,a-) such that for each x* c E* and t c IR +we hav'e that

t
X*Y(t) =J F(s)d(x*X(s)) a.s.

0

Proof. Without loss of generality we can assume that

T(t) ft -s~~d

0

a.s. as t * .For each x* c E* the process

* a(x*)x*X(t), t > 0, where a(Ix*) (Jlx*xlPm(dx))1/ <

U

7 L



. . . .-'... .. ... ..- L

and a(x*)=O otherwise, is a real p-stable motion (see (3.1)). By

Theorem 2.2, for any fixed x* c E*, the real processes

:J Il(t)F~~~~~)
Z (t) F(s)d(x*X(s)), t > 0, and x*X(t), t > 0,
Sx* 0

have the same finite dimensional distributions. Moreover, Z ,(t) isx
A -measurable and the increments Zx*(t+h)- Zx*(t), h > 0, are inde-
t

pendent of At.

Observe now, that for any fixed t > 0, Zx*(t), x* E*, is a

linear process on E*, equidistributed with the linear decomposable

process x*X(t), x* c E*. Therefore, there exists an E-valued random

vector X(t) such that for each x* c E*, x*X(t) = Zx*(t) a.s. Also,

by the above remarks, the process X(t) is (A t)-adapted and the

increments X(t+h)-X(t),h > 0, are independent of A Therefore
X(t), t > 0, has the same finite dimensional distributions as X(t),

t > 0, and we can select a modification of X (also denoted by X) with " -

. all sample paths in DE[O,-). Hence Y(t), t > 0, defined by the

formula

Y(t) =X(ft)),

- has sample paths in DE[O,,) and satisfies, for any x* e E* and t > 0,

the formula
t

x*Y(t) = F(s)d(x*X(s)) a.s.

O.E.D.

Rer-ark. The above construction, with obvious modifications,

works for an E-valued Brownian motion as well.

The following result, besides providing moment estimates for the

integral !F(s)dX(s), shows that the latter exists also in the strong

sense. It follows immediately from the construction given in the

proof of Theorem 4.1 and from Theorem 3.1.

THEOREM 4.2. If , grows more elowZ, thon , < p < 2, then

there exist positive constants c1 and c 2 depending onZy on p,c,q 0

and q such that

ciE*f(JIF(s)lPds) < J E4 sup IIfr(s)dX(s)l _<c2 El(ffIr(s)ls) ,0 U- ( t 0 0

. . . . . . . . .-.." . . . .*- . .



Append ix

Proof of Theorem 3.1. (cf. [1)). Clearly,it suffices to prove

that

and

To obtain (A.1), it is enough to show that for 6>1, 6>0 andx>0

P~tlp >aA, *(T) <6XI C(,6)PTI/>XS

where c(8,).) -~ 0 as either 0 or 6 - 0 (see Burkholder (1973),
Lemma 7.1; the assumption 4q(0)=0 is not necessary in this case).

Setting a XP) and b =(sA)P one obtains

P -1 >6XX*(i)<6X P[-r>b, X*(i-) < 6XJ<PE1>a,MjX(b)-X(a)jU<Vhj

=P[-t>a]PEIIX(b)-X(a)jj<26X) -

= [r/ Pt">XjPEHX(1)Ii< Sp26 7P

which proves (A.1).
To obtain (A.2), we define an {A.11-stopping time

o i nf {t>0: JJX(t A T)H > ~

Then we have that

PfX*(T) > T /

PEXr)>,~, 1 ~<6~, x olxC)I I47KI+p~tIX*(T)(1s, I>< 1~ 6xI IX(O)I jj )-

I+J.

Put a *(D~)P. For Z>2 we have

.. . . .... . .. . ..



I = P[X*(T) > 1 ,tl , 1X(o)I{ < C < T"

< P[sup IIX(c + t) - X(O)l>T- , c < ]1t _< a

= PCX*(a) > ] P [a < -T]

_* 2P [IIX(1)1l > 1 P[x*(T) > >

_ 2 Ap (X) P[X*(T) > A].

where A (X) sup PP [IIX(l)II > X] <

Next, we obtain an estimate for J. Note that if n is the Levy

measure for X(l) then

n(BR) = (dx)dr/r cm(U)P1 R CRP,R (R,-)-U .-p

where BR is the ball in E with radius R and center at 0. Let

Y(t) = J(HJX(s)HJ > R),

s<t

where LAX(s) is the jump process associated with X(s). Then Y(t) is
Poisson process with parameter n(B that Y(t)-t n (BR) is a

martingale (with respect {At}). By the optional sampling theorem,

for every bounded {At) stopping time T

E I J(IIlX(s)JI > R) = EY(T) = n(Bc)E-
S<T R

Let o, -- A T A a. If s<a I < a A - then MA X(s)IJ < 2X by defini-
tion of a. Hence, if R > 2X then

P[IIAx(CI)I I  > R] • E I(I1AX(s)JI > R) - n(e ) E a1
s<0

Since a < T we have X*(T) > IX(o )11, and, consequently, for E>o
we obtain that

J - P[X*(T) > SX,, < a, Hx(o)l > , < "3)

P[IIAX(o 1)H > ( - I)X] n(Bc Eo

-)2...................................



CS
= C 1)-PXipEo 3 - 1) Pn(BC E o

71 3 X~ 1

= 3P( l)-pPEHj'X(O)I > 3X] < - 1 rPflIX(a1)Hj X]

< 3(* - 1)-PP[X*(T) >X]

Putting together estimates for I and J we get that

PX()P]< P[X*(T) > ex- 1 P<i5x] + p[IP> 6) 1

<c(S,6,p)P[X*(T)>X) + 4 >

where )p)
C(-r,6,p) = -[PCA (X) + 3P(7

Therefore

0.

< '(O) + C(6,6,P)JP[X*( ) >X)dO4X) + JP[T/>S]dNa)
00-

<c(6,6,p) E, (X*(T)) + E(- /)

If 6 > ao and 6 < a-~ then

EO((X*( T) E4,(Q-0 X*(i)) <_eDS-X(T

and
1 1/p) <i/p

E(D 6 T' /P

Finally, we obtain the inequality

r- 1 -qc(..) EO(X*(T)) c-~PTIP

which proves (A.2) since the constant on the left hand side can be

made positive by taking 8 large enough and 6 small enough (remember

that q < p).
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